当前位置:冬梦学习网学习方法初中学习方法内容页

初三数学函数几何知识点总结

今天小编为同学们带来的是关于初三数学的函数、平面几何的知识点,不知道同学们在面对函数这一块的学习怎么来了,接下来就让我们一起来学习一下吧,希望可以帮助到有需要的同学。

一、函数、方程、不等式

常用的数学思想:

⑴数形结合的思想方法。

⑵待定系数法。

⑶配方法。

⑷联系与转化的思想。

⑸图像的平移变换。

二、证明角的相等

1、对顶角相等。

2、角(或同角)的补角相等或余角相等。

3、两直线平行,同位角相等、内错角相等。

4、凡直角都相等。

5、角平分线分得的两个角相等。

6、同一个三角形中,等边对等角。

7、等腰三角形中,底边上的高(或中线)平分顶角。

8、平行四边形的对角相等。

9、菱形的每一条对角线平分一组对角。

10、 等腰梯形同一底上的两个角相等。

11、 关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所 对的圆心角相等。

12、 圆内接四边形的任何一个外角都等于它的内对角。

13、 同弧或等弧所对的圆周角相等。

14、 弦切角等于它所夹的弧对的圆周角。

15、 同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

16、 全等三角形的对应角相等。

17、 相似三角形的对应角相等。

18、 利用等量代换。

19、 利用代数或三角计算出角的度数相等

20、 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。

三、证明直线的平行或垂直

1、证明两条直线平行的主要依据和方法:

⑴、定义、在同一平面内不相交的两条直线平行。

⑵、平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。

⑶、平行线的判定:同位角相等(内错角或同旁内角),两直线平行。

⑷、平行四边形的对边平行。

⑸、梯形的两底平行。

⑹、三角形(或梯形)的中位线平行与第三边(或两底)

⑺、一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。

2、证明两条直线垂直的主要依据和方法:

⑴、两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。

⑵、直角三角形的两直角边互相垂直。

⑶、三角形的两个锐角互余,则第三个内角为直角。

⑷、三角形一边的中线等于这边的一半,则这个三角形为直角三角形。

⑸、三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。

⑹、三角形(或多边形)一边上的高垂直于这边。

⑺、等腰三角形的顶角平分线(或底边上的中线)垂直于底边。

⑻、矩形的两临边互相垂直。

⑼、菱形的对角线互相垂直。

⑽、平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。

⑾、半圆或直径所对的圆周角是直角。

⑿、圆的切线垂直于过切点的半径。

⒀、相交两圆的连心线垂直于两圆的公共弦。

四、证明线段的比例式或等积式的主要依据和方法

1、比例线段的定义。

2、平行线分线段成比例定理及推论。

3、平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。

4、过分点作平行线;

5、相似三角形的对应高成比例,对应中线的比和对应角平分线的比都等于相似比。

6、相似三角形的周长的比等于相似比。

7、相似三角形的面积的比等于相似比的平方。

8、相似三角形的对应边成比例。

9、通过比例的性质推导。

10、用代数、三角方法进行计算。

11、借助等比或等线段代换。

初三数学函数几何知识点总结相关: