五年级的数学学习当中,第六单元是最重要的一个单元,所以教师在这之前要做好准备,完备方能无患,小编在这里整理了相关信息,希望能帮助到您。
第六单元:多边形的面积
教材分析
本单元学习的内容主要包括:平行四边形、三角形、梯形和组合图形的面积四个部分。它们的面积计算是在学生掌握了这些图形的特征以及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开展学习的。这是进一步学习圆的面积和立体图形的表面积的基础。学习组合图形的面积安排在平行四边形、三角形和梯形面积计算之后,也是利用转化的数学思想,让学生把不规则的平面图形转化为规则的平面图形来计算,降低了学生的学习难度,并巩固了学生对各种平面图形的特征的认识及面积计算,发展了学生的空间观念。
学情分析
学生已经对空间观念和直观几何已有了较为丰富的经验。在学习本单元之前,他们在生活中积累了有关图形认识和图形测量的经验,再加上已经学习了长方形、正方形、三角形的特征以及长方形、正方形的面积计算。为此,学习本单元面积公式的推导过程中,教师应引导学生紧密联系生活实际,从已有的认知基础和生活经验出发,让学生在数、剪、拼、摆等操作活动中,完成对新知的构建。所以引导学生利用转化的数学思想,在操作中学习新知是本单元教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,切忌由教师带着做。通过实际操作活动,发展学生的空间观念,培养动手操作能力,为接下来学习圆的面积作好铺垫。
教学目标
知识技能:掌握平行四边形、三角形和梯形的面积计算公式,并能正确地计算相应图形的面积;了解简单组合图形面积的计算方法。
数学思考:在推理公式的过程中,引导学生应用转化的数学思想方法,经历计算公式的过程。
问题解决:能用有关图形的面积计算公式解决简单的实际问题。在解决问题的过程中,感受数学和现实生活的密切联系,体会学数学、用数学的乐趣。
情感态度:培养学生认真思考、比较、推理和概况的能力。
教学重点:掌握平行四边形、三角形和梯形的面积计算公式;会计算平行四边形、三角形和梯形的面积。
教学难点:渗透“转化”思想,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
课时安排:9课时
1.平行四边形的面积………………………2课时
2.三角形的面积……………………………2课时
3.梯形的面积………………………………2课时
4.组合图形的面积…………………………2课时
5.整理和复习………………………………1课时
课题:第六单元:多边形的面积—平行四边形的面积 第 1 课时 总序第 1 个教案
课型: 新授
教学内容:教材P87~88例1及练习十九第1、2、3题。
教学目标:
知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。
过程与方法:通过剪、摆、摆等活动,让学生主动探究平行四边形的面积的计算公式。
情感、态度与价值观:培养学生初步的空间观念,及积极参与、团结合作、主动探索的精神。
教学重点:掌握平行四边形的面积公式的推导过程和平行四边形的面积的计算。
教学难点:理解平行四边形的面积公式的推导过程。
教学方法:迁移式、尝试、扶放式教学法
教学准备:师:多媒体。生:剪刀、直尺、平行四边形纸片、练习本。
教学过程
一、情境导入
1.谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(一个长方形,一个平行四边形。)
2.让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。
3.提问:你会算它们的面积吗?
4.揭示课题:今天我们就来学习和研究平行四边形的面积的计算。
(板书课题:平行四边形的面积)
二、互动新授
1.数方格,比较大小。
想一想,我们可以用什么方法来计算平行四边形的面积呢?
根据已有经验,学生会想到用数方格的方式得出平行四边形的面积。
出示教材第87页方格图及平行四边形图:
引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算,问这个平行四边形的面积是多少平方米?
学生数完以后会得出:这个平行四边形的面积是24m2。
继续出示教材第87页的长方形图,让学生数一数并算一算长方形的面积是多少。
学生数完得出:长方形的长为6m,宽为4m,面积是24m2。
引导学生完成教材87页的表格,并对填表的结果进行讨论:你发现了什么?
通过比较、讨论,得出:两个图形的底与长,高与宽和面积分别相等。
2.猜想验证。
提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)
引导学生小结并质疑:计算平行四边形的面积用数格子的方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?
引导假设:是否可以把平行四边形变成一个长方形来计算出它的面积?
操作验证:演示教材第88页平行四边形面积的推导过程,并让学生拿出自己的学具平行四边形纸片,像刚才演示的操作一样,同桌相互合作,动手进行剪、拼、移的操作方法,从中再次验证一下是否正确。
师巡回指导学生的操作。
引导学生思考:通过刚才的操作演示你发现了什么?
学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。
引导学生利用长方形的面积公式推导出平行四边形的面积公式:
平行四边形的面积=底×高
追问:要求平行四边形的面积必须知道什么条件?
学生得出结论:必须知道平行四边形的底和对应的高。
3.全班交流,要求学生说出自己的推导过程。(我们把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。)
4.教学用字母表示。
如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成: S=ah(板书)
5.应用面积计算公式计算平行四边形的面积。
出示教材第88页例1.
学生读题,理解题意;独立完成;教师板书。
三、巩固拓展
完成教材第89页“练习十九”第2题。可先让学生试着做,再通过集体订正检查掌握情况。
四、课堂小结
师:这节课你学会了什么,有哪些收获?引导总结:把平行四边形转化成长方形可以推导出平行四边形的面积公式:平行四边形的面积=底×高
作业:教材第89页练习十九第1、3题。
板书设计:
平行四边形的面积
长方形的面积=长 × 宽 例1 S =ah
↓ ↓ ↓ =6×4
平行四边的面积=底 × 高 =24(m2)
↓ ↓ ↓
S a h
课题:第六单元:平行四边形的面积—练习十九 第 2 课时 总序第 2 个教案
课型: 练习
教学内容:教材P89~90练习十九第4~11题。
教学目标:
知识与技能:熟练运用平行四边形的面积公式计算平行四边形的面积,解决相关的实际问题。能根据底、高、面积三个量中的任意两个量,用算术方法或方程计算第三个量。
过程与方法:通过猜测、验证、比较发现平行四边形的面积与底和高的直接关系。
情感、态度与价值观:体会数学的应用价值及数学与生活的紧密联系。
教学重点:运用所学知识解决有关平行四边形面积的应用题。
教学难点:逆用平行四边形面积的计算公式。
教学方法:学练结合。
教学准备:多媒体、一个平行四边形、一个长方形。
教学过程
一、基本训练
1.复习回顾:
师:上节课我们一起探究了平行四边形的面积计算公式,谁来说说要求面积必须知道什么?怎样求?教师板书公式。
2.你能想办法求出下面两个平行四边形的面积吗?(练习十九第4题)
将(3)与(2)比较,从数量关系上看,哪里相同?哪里不同?
讨论归纳后,学生列式解答:58500÷(250×78÷10000)
(4)小结:上述几题,我们根据一题多变的思想进行练习,尤其是变式后的两道题,都是要先求面积,再变换成积后才能进入下一步计算,否则就会出现问题。
2.练习十九第6题。
(1)组织全班学生讨论这两个平行四边形的面积是否相等。
(2)引导学生观察,这两个平行四边形的底和高分别是多少?
学生观察得出:这两个平行四边形的底都是2.8 cm,高都是1.5 cm。
(3)启发学生得出:等底等高的平行四边形的面积相等。
3.练习十九第7题。
让学生掌握平行四边形的底和高与正方形之间的关系。(平行四边形的底和高分别等于正方形的边长。)
4.练习十九第8题。
让学生观察、讨论什么不变,什么发生了变化(四条边的长度不变,底边上的高发生变化),从而得到它们的周长不变,但面积变小了。
三、巩固练习
1.教材第89页练习十九第5题。
(1)学生读题,理解题意。
(2)引导学生讨论:根据哪两个条件可以求出这块麦田有多少公顷?
要求平均每公顷收小麦多少吨,必须知道哪两个条件?
(3)让学生自己列式,再全班集体订正。
2.教材第90页练习十九第11*题。
(1)议一议:把两个小三角形拼接在一起,会有什么新的发现?
(2)拼摆的平行四边形和小平行四边形有什么关系?
引导得出:拼摆的平行四边形和小平行四边形等底等高,因此面积都是大平行四边形面积的一半:48÷2-24(cm2)。
四、课堂小结。
组织学生认真回顾这节课的知识,说一说自己的收获。
作业:教材第90页练习十九第9、10题。
板书设计:
平行四边形面积的练习
S=ah
等底等高的平行四边形的面积相等。
课题:第六单元:多边形的面积—三角形的面积 第 1 课时 总序第 3 个教案
课型: 新授
教学内容:教材P92例2及练习二十第1、2题。
教学目标:
知识与技能:掌握三角形的面积计算公式,并能正确计算三角形的面积。
过程与方法:经历探索三角形的面积计算公式的过程,能用三角形的面积计算公式解决简单的实际问题。
情感、态度与价值观:培养学生观察、比较、推理和概括能力。
教学重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。
教学难点:三角形的面积计算公式的推导过程和实际应用。
教学方法:动手实践、自主探索、合作交流
教学准备:多媒体。
教学过程
一、复习导入
1.出示长方形、正方形、平行四边形、三角形的图片。
提问:我们学过了哪些平面图形的面积?计算这些图形的面积公式是什么?
学生回答:长方形的面积=长×宽;正方形的面积=边长×边长;
平行四边形的面积=底×高。
2.师:今天我们就一起来研究“三角形的面积”。(板书课题:三角形的面积)
3.学习新知识之前,我们共同回忆一下平行四边形的面积计算公式是怎样得出的?(演示推导过程)
(我们把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。)
二、互动新授
l.谈话:成为一名少先队员后,我们每个人都要佩带红领巾。红领巾是什么形状的?(三角形)如果要想知道它用多少面料,要怎样解决呢?(求出三角形的面积。)
追问:怎样求三角形的面积?引导学生利用平行四边形的面积公式的推导猜测,可以把三角形转化成我们已经学过的图形。
2.请每个小组拿出三角形学具,并说一说你发现了什么?(每组都有完全一样的直角三角形、锐角三角形、钝角三角形各两个。)
师提出操作要求:用两个同样的三角形拼一拼,并思考:能拼出什么图形?拼出图形的面积你会计算吗?拼出的图形与原来的三角形有什么联系?(这里不让学生回答,而是通过动手操作得出结论。)
3.分小组操作,并利用下表做好记录。
我们是用两个( )三角形,拼成了一个( )。
原三角形的底等于拼成的( )形的( );原三角形的高等于拼成的( )形的( );原三角形的面积等于拼成的( )形的( )。
教师巡视指导。
小组汇报操作结果:让学生边汇报边把转化后的图形贴在黑板上。
学生可能选用两个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,
每一个锐角三角形的面积是这个平行四边形面积的一半,所以得出一个三角形的面积=底×高÷2。
也可能选用两个完全一样的直角三角形拼成了一个长方形,拼成的长方形的长就是直角三角形的一条直角边(可以看作直角三角形的高),拼成的长方形的宽就是直角三角形的另一条直角边(可以看作直角三角形的底)。拼成的长方形的面积=长×宽,每一个直角三角形的面积就是这个长方形面积的一半,所以得出一个三角形的面积=底×高÷2。
还可以选两个完全一样的钝角三角形拼成一个平行四边形。同理,每一个钝角三角形的面积是这个平行四边形面积的一半。所以,得出一个三角形的面积=底×高÷2。
4.小结:不管是锐角三角形、直角三角形,还是钝角三角形,只要是两个完全一样的三角形,就能拼成一个平行四边形,其中一个三角形的面积是拼成的平行四边形的面积的一半。
追问:是不是任意一个三角形的面积都是任意一个平行四边形面积的一半呢?
教师可以通过任意一个三角形和与其不等底等高的平行四边形的纸板,让学生通过对比得出:三角形的底和高必须与平行四边形的底和高相等时,这个三角形的面积才是平行四边形的面积的一半。三角形的面积是与它等底等高的平行四边形的面积的一半。(教师根据学生回答板书)
再让学生说一说三角形的面积的计算公式是什么?
5.如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,那么三角形的面积计算公式可以写成:S=ah÷2(板书)
6.教学教材第92页例2。
出示第92页例2:红领巾的底是lOOcm,高是33cm,它的面积是多少平方厘米?
让学生独立计算,再集体订正。
说一说都是怎样做的,并根据学生的汇报板书计算过程: S=ah÷2
=100×33÷2
=1650(cm2)
7.让学生再说一说:为什么要除以2?
学生可能会回答:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。
三、巩固拓展
1.出示:一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?
由学生独立解答,订正答案。
2.完成教材第92页“做一做”第1题。先让学生找一找三角尺的底和高,使学生明白直角三角形的任意一条直角边作底,另一条直角边就作高。如底是7.2cm,高是12.5cm。再进行计算。
3.完成教材第92页“做一做”第2题。
先说一说涂色的三角形的面积与平行四边形的面积有什么关系,再计算。
(涂色的三角形的面积是平行四边形面积的一半。)
四、课堂小结
师:这节课你学会了什么?有哪些收获?引导总结:1.三角形的面积=底×高÷2,用字母表示S=ah÷2。2.要求三角形的面积需要知道三角形的底和高。3.三角形的面积是与它等底等高的平行四边形的面积的一半。
作业:教材第93页练习二十第1、2题。
板书设计:
三角形的面积
三角形的面积是与它等底等高的平行四边形的面积的一半。
三角形的面积=底×高÷2 例2 S=ah÷2
=100×33÷2
=1650(cm2)
小学生五年级数学第六单元知识点教案相关文章: