整式的乘法知识点有哪些?怎么整理这些知识点?下面是小编为大家整理的关于整式的乘法知识点精析,希望对您有所帮助。欢迎大家阅读参考学习!
整式的乘法知识点精析
1.同底数幂的乘法
同底数幂相乘,底数不变,指数相加,即am·an=am+n(m,n是正整数)
当三个或三个以上同底数幂相乘时,仍适用法则,am·an·ap=am+n+p(m,n,p都是正整数).
2.幂的乘方
幂的乘方,底数不变,指数相乘,即(am)n=anm(m,n都是正整数)
(1)不要把幂的乘方性质与同底数幂的乘法性质混淆,幂的乘方运算是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).
(2)这个性质可逆用,即anm=(am)n=(an)m
3.积的乘方
积的乘方,等于把积中的每个因式分别乘方,再把所得的幂相乘,即(ab)n=an·bn(n为正整数).这个性质适用于三个或三个以上因式的积的乘方.
(1)这个性质可逆用,即an.bn=(ab)n,即指数相同的幂相乘,可先把底数相乘,再求积的同次幂.
(2)进行积的乘方运算时,不要出现漏掉一些因式乘方的错误,如(-2ab2)3≠-2a3b6等.
4.单项式乘以单项式
系数乘以系数作为积中的系数,所有不同因式都作为积中的因式,相同字母或相同因式的指数由该字母或因式的指数和为它们的指数.
(1)对于只在一个单项式中出现的字母,应连同它的指数-起写在积里,应特别注意不能漏掉这部分因式.
(2)单项式乘法中若有乘方、乘法等混合运算,应按“先算乘方,再算乘法”的顺序进行.
(3)单项式乘以单项式,结果仍是单项式.对于字母因式的幂的底数是多项式形式的,应将其视为一个整体来运算.三个或三个以上的单项式相乘,法则仍适用.
5.单项式乘以多项式
(1)单项式与多项式的乘法法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.
(2)单项式与多项式的积仍是一个多项式,项数与原多项式的项数相同.
6.多项式乘以多项式
多项式乘以多项式的法则:(a+b)(m+n)=ma+mb+na+nb.这就是说:多项式乘以多项式,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。
应注意的问题
(1)运算时要按一定的顺序进行,防止漏项,积的项数在没有合并同类项以前,应是两个多项式的项数的积.
(2)运算时要注意积的符号.
(3)运算结果有同类项的要合并同类项,并按某个字母的升幂或降幂排列.
解题指导
[例](1)100·10m+1·100m-3;(2)-(-a)3·(-a)2·(-a);(3)(b-a)·(b-a)2;(4)(-a)3(-a)2(-a)+(-a4)(-a)2.
分析:应用同底数幂的乘法法则时,先把各式化成同底数幂,应熟悉下列转换等式:(a-b)2=(b-a)2,(a-b)3=-(b-a)3.计算时,结合乘法法则确定积的性质符号.
解(1)原式=102·10m+1·10m-3=102+m+1+m-3=102m;
(2)原式=-(-a)3+2+1=-(-a)6=-a6;
(3)原式=(b-a)l+2=(b-a)3;
(4)原式=(-a)3+2+1-a4·a2=a6-a6=0.
说明:同底数幂的乘法法则公式中,底数可以是多项式,不能简单地认为底数只是一个单项式,如(3x-2y-z)3·(3x-2y-z)5也适用公式.