当前位置:冬梦学习网教学资料主题班会内容页

高三数学优秀说课稿范文

2023-12-14 08:48:38主题班会访问手机版

篇一:高三数学优秀说课稿范文

一、说教材

1.从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.

2.从学生认知角度看

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.

3.学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.

4.重点、难点

教学重点:公式的推导、公式的特点和公式的运用.

教学难点:公式的推导方法和公式的灵活运用.

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.

二、说目标

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.

三、说过程

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1.创设情境,提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?

设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.

2.师生互动,探究问题

在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现?

设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.

经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.

3.类比联想,解决问题

这时我再顺势引导学生将结论一般化,

这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.

设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.

对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)

再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.

4.讨论交流,延伸拓展

篇二:高三数学优秀说课稿范文

一。教材分析

1.本节课内容在整个教材中的地位和作用

概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

2.教学目标定位

根据教学大纲要求、新课程标准精神,我确定了三个层面的教学目标。

(1)基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;

(2)过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;

(3)情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

3.教学重难点

重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。

二。教法学法分析

数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。为了更好地体现在课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。为此,我设计了5个环节:①创设情景——引入新课;②交流探究——发现规律;③启发引导——形成结论;④训练小结——深化巩固;⑤思维拓展——提高能力。这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。

三。教学过程分析

1.创设情景—引入新课

教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示一道题目,以需要画y=2_?图像为引子,让学生画y=_?和y=2_?图像,进而比较这两个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=_?与y=a_?图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。

由浅入深,下面让学生画y=2_?,y=2(_+1)?与y=2(_+1)?+3的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以提高学生的学习兴趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。

2.探究交流—发现规律

从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。让学生做出y=2_?与y=2_?+4_-1的图像,再与课件上的图像对比并叙述二者之间的位置关系,得出结论:若二次函数的解析式为y=a_?+b_+c,先将其化成y=a(_+h)?+k的形式,从而判断出y=a_?+b_+c的图像是如何由y=a_?变换得到的。在课本第42页例1(1)中要提醒学生注意,在含有参数的解析式y=a(_+h)?+k中,顶点坐标应是(-h,k),而不是(h,k)。所以,例1(1)中二次函数f(_)顶点的横坐标是4,即-h=4,h=-4,括号里面就是_-4(这里容易出错)。例1(2)中h、k的值是已知的,只需要确定a的值就可以了。

3.启发引导—形成结论

前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=_?到y=a_?,y=a_?到y=a(_+h)?+k,y=a_?到y=a_?+b_+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。

4.练习小结——巩固深化

为了巩固和加深二次函数y=a_?+b_+c中的a.b.c对图像的影响,接下来组织学生进行课题练习,完成课本44页练习1—3题。上课时间有限,为保证在完成教学任务的前提下,让学生充分练习和讨论,我一直坚持让学生规范使用演草本。课堂上需要学生动手演练的地方不急于安排学生马上讨论,而是让学生思考后将自己的答案整齐地写在演草本上,然后小组内四人相互交换进行量分,因为是在课堂上,量分标准要简单,我要求用30分的整分制。用时较短10分,书写整齐规范10分,解答正确10分。这个过程中会产生学生之间的三次竞争:①看谁解的快、用时最短;②看谁书写的整齐;③看谁做的对。这个自己做和批阅的过程,也是学生对题目加深理解的过程。量完分后组织学生对不同解法进行探究,这又会产生学生之间的第四次竞争,看谁的方法简便,思维更严密。当然做题时有的学生会做的很快,可以让他们判断黑板上演示学生的解题得分情况,这也促进在黑板上演示的学生同下面学生之间的竞争。这个充满竞争的过程其实也是教师通过演草本无形引导学生解决问题、收获新知的过程,也是一个培养学生探究精神和思考、比较、辨别能力的过程,使学生成为学习上的主人。这样每节课都有竞争,能使学生发现自己在学习的长处,增强了自己的自信心,切实感受到了学习的乐趣,课堂才能真正的活起来。考试中,成绩必然会逐步提高,能避免现在我们教学中学生"考试什么都不会,考完后什么都会"以及阅卷中发现的学生书写凌乱的通病,经过长期这样的练习,每个学生练就了快思考、求准确、写整齐的能力。

5.延伸拓广——提高能力

课堂教学既要面对全体学生,又应关注学生的个体差异,体现分类推进,分层教学原则。为此,我设计了一个提高练习题组,共两道被选题目,以供学有余力的学生能够更好的展示自己的解题能力,取得进一步提高。

篇三:高三数学优秀说课稿范文

一、教材分析:

(一)地位与作用:

《应用举例》通过运用正弦定理、余弦定理解决某些与测量、工业和几何计算有关的实际问题,使学生进一步体会数学在实际中的应用,激发学生学习数学的兴趣,培养学生由实际问题抽象出数学问题并加以解决的能力。从某种意义上讲,这一部分可以视为用代数法解决几何问题的典型内容之一。它是对前面学习的正余弦定理以及三角函数知识的应用推广,有机的将数学理论知识与实际生活联系起来,再次提高学生的数学建模能力。

(二)学情分析:

高中学生的学习以掌握系统的、理性的间接经验为主。然而,间接经验并非学生亲自实践得来的,有可能理解得不深刻。因此,还应适当地参加课外活动,亲自获得一些直接的经验,以加深对间接知识的理解,培养自己综合运用知识,主动探索新知识和创造性地解决问题的能力。 高中二年级的学生学习主动性增强,观察力,思维的方向性、目的性更明确,而且他们的独立分析和解决问题的能力也有很大的提高,依赖性减少,他们开始重视把书本知识和实践活动结合起来,形成知识、能力和个性的协调发展。

基于以上我制定如下的教学目标及教学重难点:

(三)教学目标:

1、知识与技能

初步运用正弦定理、余弦定理解决某些与测量、工业和几何计算有关的实际问题。

2、过程与方法

通过解决“测量一个底部不能到达的建筑物的高度”或“测量平面上两个不能到达的地方之间的距离”的问题,初步掌握将实际问题转化为解斜三角形问题的方法,进一步提高用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力。

3、情感、态度与价值观

通过解决“测量”问题,体会如何将具体的实际问题转化为抽象的数学问题,逐步养成实事求是,扎实严谨的科学态度,学会用数学的思维方式去解决问题,认识世界。

(四)重点难点:

根据知识与技能目标以及学生的逻辑思维能力和知识水平确定以下的教学重难点。

教学重点:如何将实际问题转化为数学问题,并利用解斜三角形的方法予以解决。

教学难点:分析、探究并确定将实际问题转化为数学问题的思路。

为突出重点,突破难点,让学生准确分析题意,加深对实际情况的理解,我把幻灯片与实物投影有机地结合起来,并让学生亲自动手参与具体测量工作,激发学生的学习热情,实现由具体的实际问题向抽象的数学问题转化。重点体现以学生为主体,教师为主导的教学理念。

(五)教具:

多媒体、实物投影、自制测角仪、米尺

二、教法学法

根据化理论、系统论,以教师为主导,学生为主体的原则,结合高二学生的认知特点,喜欢探究事物的本质 ,创设良好的教学活动环境,控制活动进程,鼓励学生大胆质疑,引发争论,并让学生自由发表各研究小组的见解。同时尊重学生的主体地位,给学生充分的动手时间,进行思考探索,合作交流,以达到对知识的发现和接受,使书本知识成为学生自己的知识,从而达到教学的效果。

三、教学过程:

基于上述教法学法分析,我把教学分为课前和课上两块:

第一块:课前教具准备及材料收集

1、课前简要讲述测角仪原理,学生自己动手制作简易测角仪。

2、课前组织学生去测量沈阳彩电塔的指定相关数据,收集材料。激发学生对家乡的热爱。

3、提出课前思考题:怎样用米尺和测角仪,测算电视塔的高度?

这部分课前准备可以使同学们在活动中感受体验,获得感性的认识,为新课教学奠定基础。

第二块:课上教学研究

第一部分:复习回顾

(1) 正弦定理、余弦定理

(2) 正弦定理、余弦定理能解决哪些类型的三角形问题?

在此复习旧知为新课做好理论支持,也为数学建模提供思路。第二部分:设置情境,引出问题

在课前材料准备,和知识储备基础上,创设全方位立体情景,例如热点问题冰岛火山灰对世界各地侵扰时间的预测(也就是通过冰岛与各地距离的测算及火山灰扩散速度推算时间问题);课外活动中的彩电塔高度的测算问题,以及地球与月球之间的距离问题引入我们的新课:利用正弦定理、余弦定理研究如何测量距离——《应用举例》。(板书课题)在此充分调动学生的好奇心,激发学生的探索精神,进入问题研究阶段。

第三部分:新课研究。(分四步)

第一步:合作交流,探求新知

学生在初中研究过底部能到达的建筑物高度的测量方法,提示学生用类比的思想再次研究底部不能到达的建筑物高度又怎么测算——以彩电塔为例,对测量的数据进行分析,处理。

教师可以让学生拿出各小组测得的数据讨论 ,并派代表发表见解,实物投影展示其完成情况。学生通过研究可能得到如下方法:____(投影展示多种方法)。要注意给学生足够多的时间,空间发挥自己的聪明才智,分析解决问题,充分展示自我,享受学习的乐趣。再次体现学生为主体的教学理念。

第二步:分析解题方法,突出重点,突破难点。

在学生充分发表各自的见解后,出示一组学生的数据,具体运用正余弦定理解题,并归纳总结解题的方法。

解题步骤:

(1)分析:理解题意,分清已知与未知,画出示意图

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型

(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解

(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解

通过以上步骤,使学生学会收集材料,整理材料及分析材料的方法,学会用数学思维方式去解决问题、认识世界。

如果学生讨论的情况不是很好,可视情况逐步引导学生分析题意,研究一个具体问题需要(至少)设置几个测量点,哪些边角可测,哪些边角不可测,构造一个三角形能否解决问题?如何运用具有公共边的三角形进行已知(或已求)边角与待求边角之间的转化 。随着问题一个个的提出解决,知识结构逐渐在学生的头脑中完善,具体。使学生轻松自然接受,从而突破本节的重难点。

第三步:学为所用,继续探索。

进一步探究第二个问题: 怎样测量地面上两个不能到达的地方之间的距离。以测量两海岛间距离为例。鼓励学生创新,构建适当的三角形再次将实际问题转化为数学问题,从而解决实际测量不便问题,深化本节课的精髓——数学建模。

第四步:加强练习,提高能力。

(1)练习题1、2的配置,可加强学生对实际问题抽象为数学问题过程的理解和应用。在演算过程中,要求学生算法简练,算式工整,计算准确。为解答题的规范解答打下坚实的基础。

(2)练习题3呼应开头,通过台风侵袭问题联系实际问题冰岛火山灰侵扰时间预测,使学生懂得解斜三角形的知识在实际生活中有着广泛的应用。

(3)让学生以小组为单位编题,互相解答,将课堂教学推向高潮。再次加强学生对数学建模实质的理解。

第四部分:小节归纳,拓展深化

总结:

(1) 通过本节课的学习,你学会了什么方法?

(2) 能解决哪些实际问题?

通过总结使学生明确本节的学习内容,强化重点,为今后的学习打下坚定的基础。

第五部分:布置作业提高升华

我将作业分为必做题和选做题两部分,必做题面向全体,注重知识反馈,选做题更注重知识的延伸和连贯性,让有能力的学生去探求。(幻灯打出必做和选做题)

四、板书设计

篇四:高三数学优秀说课稿范文

各位评委老师,大家好!

我是本科数学__号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与(小)值》(可以在这时候板书课题,以缓解紧张)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。

一、教材分析

1、教材的地位和作用

(1)本节课主要对函数单调性的学习;

(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

(3)它是历年高考的热点、难点问题

(根据具体的课题改变就行了,如果不是热点难点问题就删掉)

2、教材重、难点

重点:函数单调性的定义

难点:函数单调性的证明

重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

二、教学目标

知识目标:

(1)函数单调性的定义

(2)函数单调性的证明

能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

情感目标:培养学生勇于探索的精神和善于合作的意识

(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

三、教法学法分析

1、教法分析

"教必有法而教无定法",只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

2、学法分析

"授人以鱼,不如授人以渔",最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

(前三部分用时控制在三分钟以内,可适当删减)

四、教学过程

1、以旧引新,导入新知

通过课前小研究让学生自行绘制出一次函数f(_)=_和二次函数f(_)=_^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(_)=_的图像在定义域是直线上升的,而二次函数f(_)=_^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

2、创设问题,探索新知

紧接着提出问题,你能用二次函数f(_)=_^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

让学生模仿刚才的表述法来描述二次函数f(_)=_^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

3、例题讲解,学以致用

例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(_1)-f(_2)化简成和差积商的形式,再比较与0的大小。

学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

4、归纳小结

本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

5、作业布置

为了让学生学习不同的数学,我将采用分层布置作业的方式:一组习题1.3A组1、2、3,二组习题1.3A组2、3、B组1、2

6、板书设计

我力求简洁明了地概括本节课的学习要点,让学生一目了然。

(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)

五、教学评价

本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

高三数学优秀说课稿范文五篇相关文章:

篇五:高三数学优秀说课稿范文

教学目的:使学生熟练掌握奇偶函数的判定以及奇偶函数性质的灵活应用;

培养学生化归、分类以及数形结合等数学思想;提高学生分析、解题的能力。

教学过程:

一、知识要点回顾

1、奇偶函数的定义:应注意两点:①定义域在数轴上关于原点对称是函数为奇偶函数的必要非充分条件。②f(_)f(_)或f(_)f(_)是定义域上的恒等式(对定义域中任一_均成立)。

2、判定函数奇偶性的方法(首先注意定义域是否为关于原点的对称区间)

①定义法判定(有时需将函数化简,或应用定义的变式:f(_)f(_)f(_)f(_)0f(_)1(f(_)0)。f(_)

②图象法。

③性质法。

3、奇偶函数的性质及其应用

①奇偶函数的定义域关于原点对称;②奇函数图象关于原点对称,并且在两个关于原点对称的区间上有相同的单调性;③偶函数图象关于y轴对称,并且在两个关于原点对称的区间上单调性相反;④若奇函数f(_)的定义域包含0,则f(0)=0;⑤f(_)为偶函数,则f(_)f(_);⑥y=f(_+a)为偶函数

而偶函数y=f(_+a)的对称轴为f(_a)f(_a)f(_)对称轴为_=a,

_=0(y轴);⑦两个奇函数的和差是奇函数,积商是偶函数;两个偶函数的和差、积商都是偶函数;一奇一偶的两个函数的积商是奇函数。

二、典例分析

例1:试判断下列函数的奇偶性

|_|(_1)0;(1)f(_)|_2||_2|;(2

)f(_);(3)f(_)_2_1__(_0)(4)f(_);(5

)ylog2(_;(6)f(_)loga。2_1__(_0)

解:(1)偶;(2)奇;(3)非奇非偶;(4)奇;(5)奇;(6)奇。简析:(1)用定义判定;

(2)先求定义域为[,再化简函数得f(_)则f(_)f(_),为奇函数;

(3)定义域不对称;

(4)_注意分段函数奇偶性的判定;

(5)、均利用f(_)f(_)0判定。

例2,(1)已知f(_)是奇函数且当_>0时,f(_)_32_21则_R时_32_21(_0)f(_)0(_0)

32_2_1(_0)

(2)设函数yf(_1)为偶函数,若_1时y_21,则_>1时,y_24_5。

简析:本题为奇偶函数对称性的灵活应用。

(1)中当_<0时,_0,则f(_)(_)32(_)21可得f(_)_32_21,∴_<0时,f(_)_32_21

也可画出示意图,由原点左边图象上任一点(_,y)关于原点的对称点(_,y)在右边的图象上可得y(_)32(_)21y_32_21。

(2)中yf(_1)为偶函数f(_1)f(_1)f(_)的对称轴为

_=1故_=1右边的图象上任一点(_,y)关于_=1的对称点(_2,y)在

(可画图帮助分析)。y_21上,∴y(_2)21_24_5。

本题也可利用二次函数的性质确定出解析式。

练习:设f(_)是定义在[-1,1]上的偶函数,g(_)与f(_)图象关于直线_=1对称,当_[2,3]时g(_)2t(_2)4(_2)3(t为常数),则f(_)的表达式为________。

例3:若奇函数f(_)是定义在(-1,1)上的增函数,试解关于a的不等式f(a2)f(a24)0。

分析:抽象函数组成的不等式的求解,常利用函数的单调性脱去“f”符号,转化为关于自变量的不等式求解,但要注意定义域)。

解:依题意得f(a2)f(a24)f(4a2)(∵f(_)为奇函数)又∵f(_)是定义在(-1,1)上的单调增函数

1a21∴1a241

2a24aa2

∴解集是{aa2}

变式1:设定义在[-2,2]上的偶函数f(_)在区间[0,2]上单调递减,若f(1m)f(m),求实数m的取值范围。|1m||m|简解:依题意得21m2

2m2121m

(注意数形结合解题)

变式2:设定义在[-2,2]上的偶函数y=f(_+1)在区间[0,2]上单调递减,若f(1-m)<f(m)求实数m的取值范围。< style="PADDING-BOTTOM: 0p_; PADDING-TOP: 0p_; PADDING-LEFT: 0p_; MARGIN: 0p_; PADDING-RIGHT: 0p_" p="">

11m3简解:依题意得1m3

|1m1||m1|1m22

例4,已知函数f(_)满足f(_+y)+f(_-y)=2f(_)·f(y),(_,yR),且

(1)f(0)=1,(2)f(_)的图象关于y轴对称。f(0)0,试证:

(分析:抽象函数奇偶性的证明,常用到赋值法及奇偶性的定义)。解:(1)令_=y=0,有f(0)f(0)2f2(0),又f(0)0∴f(0)1。

(2)令_=0,得f(y)f(y)2f(0)f(y)2f(y)

∴f(y)f(y)(yR)

∴f(_)为偶函数,∴f(_)的图象关于y轴对称。

归类总结出抽象函数的解题方法与技巧。

变式训练:设f(_)是定义在(0,)上的减函数,且对于任意_,y(0,)_都有ff(_)f(y)y

1(1)求f(1);(2)若f(4)=1,解不等式f(_6)f2_

(点明题型特征及解题方法)

三、小结

1、奇偶性的判定方法;

2、奇偶性的灵活应用(特别是对称性);

3、求解抽象不等式及抽象函数的常用方法。

四、课后练习及作业

1、完成《教学与测试》相应习题。

2、完成《导与练》相应习题。