当前位置:冬梦学习网教学资料教案模板内容页

小学五年级数学《长方体的体积》教案范文

2023-04-08 17:40:32教案模板访问手机版

第一篇:小学五年级数学《长方体的体积》教案范文

教学目标:

1、通过自己的探索,掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积。

2、在观察、操作、探索的过程中,提高自己动手操作的能力,进一步发展空间观念。

重点难点:

通过小组合作探究,掌握长方体、正方体体积的计算方法。

教学过程:

一、 创设情境,导入新课。

同学们,请看老师手里拿的什么东西?(笔盒、牙膏盒)谁大谁小呢?(引出体积的的概念)然后指出其中一个面,引出有关面积的知识。

长方形的面积与长和宽有关,正方形的面积与边长有关,长方体、正方体的体积可能与什么有关?今天我们一起来探究与之相关的知识。

二、 探究新知。

1、出示情境图,仔细观察思考,你们发现了什么?

①、长方体长、宽相等的时候,越高,体积越( )。

②、长方体长、高相等的时候,越高,体积越( )。

③、长方体高、宽相等的时候,越高,体积越( )。

2、做一做

用一些相同的小正方体(棱长1厘米)摆出4个不同的长方体,记录他们的长、宽、高。

3、观察长方体的体积与它的长、宽、高有什么关系,与同学说一说,你发现了什么?

长 方 体 的 体积=( )×( )×( )

↓ ↓ ↓ ↓

用字母表示( )=( )×( )×( )

=( )

正 方 体 的 体积=( )×( )×( )

↓ ↓ ↓ ↓

用字母表示( )=( )×( )×( )

=( )

4、独立完成课本47页“试一试”1题。

①观察阴影部分的面积是各个图形的什么?( )

②想一想,知道了底面积和高,如何计算长方体或(正方体)体积?

长方体(正方体)的体积=( )×( )

v=( ) ×( )

三、巩固练习。

1、估一估这个笔盒的体积有多大?分小组量一量、算一算。

2、计算:(1)、一个长方体,长20厘米,宽12厘米,高5厘米,它的体积是多少立方厘米?

(2)、一个正方体,棱长是6分米,它的体积是多少立方分米?

(3)、一个长方体,底面积是60平方厘米,高是7厘米,它的体积是多少立方厘米?

四、课堂总结评价

1、同学们,今天,你学会了什么?用什么办法得出长方体(正方体)的体积公式的呢?

2、在这节课里,你表现怎么样?你觉得那位同学(或哪个小组)表现好?好在哪里?

五、布置作业

请你设计一个体积是210立方米的游泳池。

第二篇:小学五年级数学《长方体的体积》教案范文

教学目标:

1、密切联系生活实际,感受体积、容积单位的实际意义

2、在比较活动中,体会并理解体积和容积的意义。

3、在观察、操作中,探索长方体体积的计算方法。

教学课时:2课时

第一课时

教学过程

一、复习准备.

1、观察后回答:

①我们已经学过这些图形,你能说出它们的名称吗?

②根据学生的回答有意归类并板书.

③指着左边问:这些都是什么图形?(板书:平面图形)

④指着右边问:这又都是什么图形?(板书:立体图形)

2、出示第13页图中的各个实物,并指导学生将自己从家中带来的各个长方体和其它物体摆一起,小组仔细观察后回答下面的问题:

①这些物体的形状都是什么图形?(这些物体的形状都是立体图形)

②这些立体图形的特点是都占有一定的什么?

(空间,占有一定空间的图形叫做立体图形.)

③你知道这里面有哪些物体的形状是长方体?(肥皂、牙膏盒、墨水盒)

④你还见到过哪些物体的形状是长方体?(让学生说)

二、揭示课题.

从今天开始,我们的数学课主要研究长方体和正方体,这节课我们首先学习长方体的认识,并板书课题.

三、教学新课.

(一)出示第13页图中的各个实物,观察它们的特征.

1、认识长方体的面.

①用手摸一摸它有几个面?(注意培养学生有顺序地观察)

②每个面是什么形状?(注意出示也有两个相对的面是正方形)

③哪些面完全相等?(演示给学生看)

归纳:长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的形状、大小完全相同.

2、认识长方体的棱.

在长方体上两个面相交的边叫做棱.

①数:长方体有多少条棱?(要说出数的方法)

②量:动手量一量每条棱的长度,看哪些棱的长度相等?(有什么规律?)

归纳:长方体有12条棱,相对的4条棱的长度相等.

3、认识长方体的顶点.

三条棱相交的点叫做顶点.

长方体有几个顶点?(8个)

4、拿一个长方体放在讲台上让学生观察.

最多能看到几个面?(3个面)

讲解:所以我们通常把长方体画成这样.

5、你们还能找出长方体的其它特征吗?小组讨论,用填空的形式小结长方体的特征.

长方体是由_____个长方形(特殊情况有两个相对的面是_____形)围成的____图形.在一个长方体中,相对的两个面_____,相对的棱的长度______.

(二)教学长方体的长、宽、高.

出示长方体框架

提问:1、它的12条棱可以分为几组?怎样分?

12条棱可以分为3组,把长度相等的棱分为一组.

2、相交于同一个顶点的三条棱长度相等吗?

想一想:

1、你知道相交于一个顶点的三条棱的长度分别叫做长方体的什么吗?(长、宽、高)

2、长方体的长、宽、高的长短与这个长方体有没有关系?

结论:长方体的大小和形状是由它的长、宽、高决定的.

四、巩固练习.

1、让学生拿出准备好的长方体展开图,按要求做一个长方体,然后让学生说出自己度量的结果,并指出它的长、宽、高.(注意不同放置法的长、宽、高)

2、看图说出每个长方体的长、宽、高是多少?

五、课堂小结.

今天我们学习了哪些知识?你还有什么问题吗?

六、课后作业.

自己设计一个长方体模型,量一量长、宽、高,然后与同学交流.

七、板书设计.

长方体的认识

面:长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的形状、大小完全相同.

棱:在长方体上两个面相交的边叫做棱.12条棱,相对的4条棱的长度相等.

顶点:三条棱相交的点叫做顶点.8个

相交于一个顶点的三条棱的长度分别叫做长方体长、宽、高.

第二课时

教学内容:P15页练一练

教学过程:

一、回忆复习:

什么是长方体?长方体有什么特征?试举例说明

二、选择一个长方体实物量一量,说一说,它的长是,宽是,高是;再测量一个正文体,它的棱长是。

三、完成下题:

指导学生:怎么根据昨天所学的长方体知识,找出相对应的长方体的各条棱,如果不借助于图,最好能在自己的大脑中想象出并概括。

四、在下面的8个面中找出6个面,使它们能围成右面的长方体,这6个面的编号分别是:。

五、实践分析:

制作如下图的一个长方体灯笼,至少需要多少厘米长的木条?

1、先分析这题实际是让我们求什么的?棱长的各

2、复习长方体的棱长条数、对数。

3、分析实际中的棱长之和,该如何求?

六、机动性的实践作业:

七、学生质疑,讨论,并布置课后作业。

第三篇:小学五年级数学《长方体的体积》教案范文

一、开门见山,直奔主题。

1、 了解新知。

看大屏幕,问:今天我们学习的内容是什么?(板:长方体体积的计算)长方体体积应该怎样计算呢?

(板:长方体体积=长×宽×高)你是怎么知道的?对于长方体的体积你还知道哪些知识?

2、 引发矛盾。

引:知道真不少,那你知道长方体的体积为什么等于长×宽×高吗?看来我们对长方体体积的学习还不太全面,还有些问题。所以对于学习老师想送给大家一句名言,我们一起来看。

3、 渗透学习态度一(出示“学贵有疑,小疑则小进,大疑则大进。——陈宪章”)引:快速地小声读一读,这是清代学者陈宪章的一句话,老师觉得我们学习数学也应该像这句话说的那样勤于思考,经常问自己一个为什么,时常拥有一双发现问题的眼睛。课前没有做到,老师希望接下来我们探索长方体体积由来时能做到,好不好?

设计意图:让学生借助预习(或自学)的力量,直接揭示课题,既符合学生的认知规律,又充分了解到学生学情底数,同时调动了学生学习积极性,为学习新知作好铺垫。最后,在“学贵有疑”的学习态度渗透中,自然的引出下一环节。

二、引导探究,获得新知。

课件(或教具)演示

1、一排一层的长方体。(出示:1立方厘米的小正方体。)

问:这是一个棱长1厘米的小正方体,一起告诉我,它的体积是多少?2个这样的小正方体的体积是多少?3个呢?4个呢?

小结:也就是说由几个1立方厘米的小正方体组成的长方体体积就是几,是这样吗?

2、3排1层的长方体。

再问:我们再来,1排4个1立方厘米的小正方体,2排多少个?3排呢?这么快,你是是怎么做的?

小结:也就是说用每排的个数4×排数3就可以求出这个长方体含有多少个1立方厘米的小正方体,是这样吗?(板:小正方体个数=每排的个数×排数)

3、3排2层的长方体。

再问:这个长方体含有多少个1立方厘米的小正方体,所以它的体积是多少?好我们再来,一层12个1立方厘米的小正方体,2层多少个?这次你是怎么做的?

小结:也就是说在前面的基础上再乘层数2就可以求出这个大长方体含有多少个1立方厘米的小正方体,是这样吗?

4、释疑辅垫。

引:学贵有疑,这里有问题了,为什么前面没有乘层数就求出了1立方厘米的小正方体呢?(引导出前面两个长方体的层数都是1,第一个长方体的排数是1)(板:小正方体个数=每排的个数×排数×层数)

5、数个数验证。

再引:数学是严谨的,用每排的个数×排数×层数求小正方体个数这个方法是否真的可行,下面我们一起来数一数,(课件或教具演示)结果相同吗?说明这个长方体的体积是多少?

6、引导发现。

引:学贵有疑,小疑则小进,大疑则大进,做到这里,对于长方体体积的由来你想到了什么?(注意评价

学生回答:他说的好不好?好在哪?)引导出每排个数相当于长方体的长,排数相当于宽,层数相当于高。

小结:现在大家知道长方体体积为什么等于长乘宽乘高了吗?由公式可以知道求长方体的体积只要知道什么就可以了?

设计意图:借助教具、学具,通过老师的引领,让学生的多种感官都参与到教学活动,在操作中发现规律,为学生创设了良好的思维情境,在头脑中建立长主体体积由来的表象,促使学生形成新的认知结构,突破教学难点,顺利地抽象出长方体体积公式。

过渡:知道了长方体体积公式的由来,老师觉得学习还不能停止,在这里,老师还想送同学们一句名言,一起来看。

三、操作验证、巩固练习。

1、学习态度二。(出示:纸上得来终觉浅,绝知此事要躬行)

引:也来快速地小声读一读,这是宋代诗人陆游的一句诗,它告诉我们从书本上或从别处得来的知识,还需要我们亲自动手实践一下,才能记得牢,理解得透。

2、拼摆计算。

引:现在老师就给大家这个机会,利用1立方厘米的小正方体用计算的方法自已来算一算长方体体积是不是真的等于长×宽×高,请同学们注意要求:

1、以小组为单位来摆,注意分工协作,

2、请填好记录单,注意发现新的问题。开始。

小结:还是那句话:数学是严谨的,通过自己来动手验证得到的知识才是最可信的。

3、学生汇报验证过程。

设计意图:通过学生熟知的陆游诗句,进一步体会数学学习的严谨性,充分相信学生,让学生自己动手,在小组合作中验证新知,再现长方体体积由来的过程,使学生加深“知其所以然”的理解,进而有效地培养学生操作及探究能力。

引:现在长方体体积公式可以确认了吗?它是什么?下面我们就用它来解决一道实际问题。

4、解决问题。(出示例题)先估算体积再独立计算。

5、巩固练习。

引:为了巩固新知,老师还准备了两个小题,还能不能做?

1、练一练第1题。

直接口答列式。

2、练一练第3题。

先谈注意问题再解答。最后拓展此题的古代解法。

3、拓展新知。

引:这是生活中一道典型的求体积的题,实际上它的解法早在2000年前就已经有了,我们来看一看。

(出示:“方自乘,以高乘之既积尺”)这是2000年前我国古代一本数学专著〈九章算术〉的解法,和我们现在的解法一样吗?你觉得我国古代的数学家怎么样?

设计意图:通过不同形式的练习既深化了知识,又培养了学生综合运用所学知识解决简单的实际问题的能力,同时也拓展了学生对古代数学的了解,升华了认知。

四、总结回顾,深化体验。

问:通过这节课学习,你有什么收获?有什么感受?

总结:老师也想通过这节课告诉大家,我们学习,不光要记住知识,还需要经常问问为什么,更需要自己动手验证新知的正确性。最后,我还想送大家一句名言,一起看(出示:天下事有难易乎,为之,则难者亦易矣;不为,则易者亦难矣。人之为学有难易乎?学之,则难者亦易矣;不学,则易者亦难矣。——彭端叔)无论学习还是做事,是没有难和易之分的,只要你去学,你去做,再困难的事也会变得很容易。知难而进是我们的学习态度。

设计意图:“谈收获”是对所学知识部分的整理,“谈感受”是学生情感方面的升华,尤其是“名言”的总结,进一步使学生对今后的生活学习有了概括性引领和提升。

第四篇:小学五年级数学《长方体的体积》教案范文

教学目标:

1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

2、培养学生空间和空间想象能力。

教学重点:

长、正方体体积公式的推导。

教学难点:

运用公式计算。

教学用具:

1立方厘米学具。

教学过程:

一、复习

1、什么叫物体的体积?

2、常用的体积单位有哪些?

3、什么是l立方厘米、l立方分米、l立方米?

二、导入新课

1、导入

我们知道了每个物体都有一定的体积,我们也知道可以利用数体积单位的方法计算物体的体积。

要知道老师手中的这个长方体和正方体的体积?你有什么办法? (用将它切成1立方厘米(1立方分米)的小正方体后数一数的方法。)

说明:用拼或切的方法看它有多少个体积单位。但是在实际生活中,有许多物体是切不开或不能切的,如:冰箱、电视机等,怎样计算它的体积呢?他们的体积会和什么有关系呢?这节课我们就来研究长方体和正方体的体积。(板书课题)

2、新课

(1)请同学们任意取出几个1立方厘米的正方体在小组里合作摆出一个长方体,边摆边想:你们是怎么摆的?你们摆出的长方体体积是多少?

(2)板书学生的:(设想举例)

体积每排个数排数 排数 层数

4 4 1 l

8 4 2 1

24 4 3 2

(3)观察:每排个数、排数、层数与体积有什么关系?

板书:体积=每排个数×排数×排数×层数

每排个数、排数、层数相当于长方体的什么?

因为每一个小正方体的棱长是l厘米,所以,每排摆几个小正方体,长正好是几厘米;摆几排,宽正好是几厘米;摆几层,高也正好是几厘米。

(4)如何计算长方体的体积?

板书:长方体体积=长×宽×高

字母公式:V=a b h