八年级数学教案人教版 篇1
一、学习目标:1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
二、重点难点
重 点: 平方差公式的推导和应用
难 点: 理解平方差公式的结构特征,灵活应用平方差公式.
三、合作学习
你能用简便方法计算下列各题吗?
(1)2001×1999 (2)998×1002
导入新课: 计算下列多项式的积.
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
结论:两个数的和与这两个数的差的积,等于这两个数的平方差.
即:(a+b)(a-b)=a2-b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
计算:
(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)
五、小结:(a+b)(a-b)=a2-b2
第三十五学时:4.2.2. 完全平方公式(一)
一、学习目标:1.完全平方公式的推导及其应用.
2.完全平方公式的几何解释.
二、重点难点:
重 点: 完全平方公式的推导过程、结构特点、几何解释,灵活应用
难 点: 理解完全平方公式的结构特征并能灵活应用公式进行计算
三、合作学习
Ⅰ.提出问题,创设情境
一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…
(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?
(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?
(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?
(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?
Ⅱ.导入新课
计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
四、精讲精练
例1、应用完全平方公式计算:
(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2
例2、用完全平方公式计算:
(1)1022 (2)992
随堂练习
第三十六学时:14.2.2 完全平方公式(二)
一、学习目标:1.添括号法则.
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重 点: 理解添括号法则,进一步熟悉乘法公式的合理利用
难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的.
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成下列运算并回忆去括号法则.
(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+( ) (2)a-b+c=a-( )
(3)a-b-c=a-( ) (4)a+b+c=a-( )
2.判断下列运算是否正确.
(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习
五、小结:去括号法则
六、作业:教科书习题
八年级数学教案人教版 篇2
一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重 点: 能观察出多项式的公因式,并根据分配律把公因式提出来
难 点: 让学生识别多项式的公因式.
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.
课堂练习
1.写出下列多项式各项的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤.:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的.
注意:(a-b)2=(b-a)2
六、作业 1、教科书习题
2、已知2x-y=1/3 ,xy=2,求2x4y3-x3y4 3、(-2)2012+(-2)2013
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
八年级数学教案人教版 篇3
一、学习目标:1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重 点: 掌握运用平方差公式分解因式.
难 点: 将单项式化为平方形式,再用平方差公式分解因式;
学习方法:归纳、概括、总结
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.
1.请看乘法公式
(a+b)(a-b)=a2-b2 (1)
左边是整式乘法,右边是一个多项式,把这个等式反过来就是
a2-b2=(a+b)(a-b) (2)
左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.
a2-b2=(a+b)(a-b)
2.公式讲解
如x2-16
=(x)2-42
=(x+4)(x-4).
9 m 2-4n2
=(3 m )2-(2n)2
=(3 m +2n)(3 m -2n)
四、精讲精练
例1、把下列各式分解因式:
(1)25-16x2; (2)9a2- b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2; (2)2x3-8x.
补充例题:判断下列分解因式是否正确.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)?(a2-1).
五、课堂练习 教科书练习
六、作业 1、教科书习题
2、分解因式:x4-16 x3-4x 4x2-(y-z)2
3、若x2-y2=30,x-y=-5求x+y